\(\int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx\) [360]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\frac {12 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{7 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d}+\frac {4 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

12/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/7*a^2*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/5*a^2*cos(d*x+c)^(3/2)*si
n(d*x+c)/d+2/7*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/d+8/7*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3873, 3854, 3856, 2719, 4130, 2720} \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{7 d}+\frac {12 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {4 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {8 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{7 d} \]

[In]

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

(12*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (8*a^2*EllipticF[(c + d*x)/2, 2])/(7*d) + (8*a^2*Sqrt[Cos[c + d*x]]
*Sin[c + d*x])/(7*d) + (4*a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a^2*Cos[c + d*x]^(5/2)*Sin[c + d*x])
/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a^2+a^2 \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx+\left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {4 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} \left (6 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} \left (12 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {8 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d}+\frac {4 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} \left (6 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{7} \left (4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {12 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d}+\frac {4 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{7} \left (4 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {12 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{7 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d}+\frac {4 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.94 (sec) , antiderivative size = 516, normalized size of antiderivative = 4.26 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\cos ^{\frac {5}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (-\frac {3 \cot (c)}{5 d}+\frac {17 \cos (d x) \sin (c)}{56 d}+\frac {\cos (2 d x) \sin (2 c)}{10 d}+\frac {\cos (3 d x) \sin (3 c)}{56 d}+\frac {17 \cos (c) \sin (d x)}{56 d}+\frac {\cos (2 c) \sin (2 d x)}{10 d}+\frac {\cos (3 c) \sin (3 d x)}{56 d}\right )-\frac {2 \cos ^2(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{7 d \sqrt {1+\cot ^2(c)}}-\frac {3 \cos ^2(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d} \]

[In]

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

Cos[c + d*x]^(5/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*((-3*Cot[c])/(5*d) + (17*Cos[d*x]*Sin[c])/(56*d
) + (Cos[2*d*x]*Sin[2*c])/(10*d) + (Cos[3*d*x]*Sin[3*c])/(56*d) + (17*Cos[c]*Sin[d*x])/(56*d) + (Cos[2*c]*Sin[
2*d*x])/(10*d) + (Cos[3*c]*Sin[3*d*x])/(56*d)) - (2*Cos[c + d*x]^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4},
 Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - S
in[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcT
an[Cot[c]]]])/(7*d*Sqrt[1 + Cot[c]^2]) - (3*Cos[c + d*x]^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*
((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[
1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[
1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[
d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1
+ Tan[c]^2]]))/(10*d)

Maple [A] (verified)

Time = 10.94 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.25

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (40 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-116 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+126 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-39 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{35 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(272\)

[In]

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-4/35*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(40*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-
116*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+126*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-39*cos(1/2*d*x+1/2*c)*
sin(1/2*d*x+1/2*c)^2+10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),2^(1/2))-21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/
2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.34 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=-\frac {2 \, {\left (10 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 10 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (5 \, a^{2} \cos \left (d x + c\right )^{2} + 14 \, a^{2} \cos \left (d x + c\right ) + 20 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{35 \, d} \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/35*(10*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 10*I*sqrt(2)*a^2*weierstra
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c
os(d*x + c) - I*sin(d*x + c))) - (5*a^2*cos(d*x + c)^2 + 14*a^2*cos(d*x + c) + 20*a^2)*sqrt(cos(d*x + c))*sin(
d*x + c))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 13.61 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.07 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\frac {2\,\left (a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{3\,d}-\frac {4\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^2,x)

[Out]

(2*(a^2*ellipticF(c/2 + (d*x)/2, 2) + a^2*cos(c + d*x)^(1/2)*sin(c + d*x)))/(3*d) - (4*a^2*cos(c + d*x)^(7/2)*
sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*a^2*cos(c + d*x)^(
9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2))